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Expressions are obtained for calculating film flow rates of liquids with complex rheological behavior on 
the surface of a rotating disk. 

Film flow of a liquid on the surface of a rotating disk is the basis of many technological processes [1-3], so that 
calculation of the hydrodynamic properties of such flows is of great importance. 

This question has been investigated in a number of studies, which derived relationships for  Newtonian [4-5], 
power-law [6-8], and viscoplastic liquids [9]. However the rheological behavior of  real media cannot always be described 
within the framework of  those models [10]. In connection with this, the g0al of the present study is to investigate the 
flow of a medium, the rheological behavior of which is described by the more general equation proposed and justified 
by Z. P. Shul'man [11] 

~/n = ~/n + (K,e)l/~. (1) 

This equation combines plasticity and nonlinear viscosity to various degrees and generalizes the majority of known 
rheological models: that of Newton (r o = 0; m = n = 1), Shevedov--Bingman (m = n = 1), Balkley--Herschel (n = 1), power 
law (% -- 0), Casson (m = n -- 2), etc. [101. 

To study liquid flow over the surface of a rotating disk we will make use of  the Navier--Stokes equation and the 
continuity equation, written in a cylindrical coordinate system moving with the disk [ 12]. In solving the problem we will 
assume the motion to be settled and neglect the effect  of the Coriolis force, gravity, and surface tension as compared 
to the centrifugal force. The rheological properties and density of the medium will be assumed to depend on time and 
radius. 

The numerically small ratio of  the characteristic film thickness H to the characteristic radius R and the presence 
of axial symmetry permit significant simplification of the system of equations of motion. After  transition to 
dimensionless quantities, elimination of derivatives with respect to polar angles, and terms of  order of  smallness greater 
than or equal to H / R  << 1, we obtain 

Ox* __ Re p 'r*,  (2) 
Oz* 

Integration of Eq. (2) yields 

co* + 0 ,  ( 0.* u* + 
dt - - z -  \ Or* + - ~ -  --bTz* / = 0. (3) 

x* = - -  Re p*r*z* q- C 1 (r*). (4) 

Since the ratio of the dynamic viscosity of air to the viscosity of the liquid medium is small, air friction on the 
film surface can be neglected, i.e., we may take 

-c* = 0  at  z* = h * .  (5) 

It follows from Eqs. (4), (5) that 

�9 * = Re p'r* (h* - -  z*). (6) 
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Flow does not develop within the liquid until r < r o [9]. The coordinate z o, above which flow is abserat, can be 
determined from the equation 

x0 = Re p'r* (h* ~ zo), (7) 

whence 

Using Eqs. (1) and (6), we obtain 

Ou* H 
Oz* R 

Integration of  Eq. (9) for z _< z o 
-- 0 at z* = 0) leads to the equation 

where 

1 ~o (8) 
* = h  $ 2 0  - - - ~  Re ~p*r* " 

(9) 
I 't ( 1 xo* ),/n]}m ~(Rep*r*)lm [(h* - -  z*)W~ 

K* Re p'r* 

with consideration of the condition of liquid "adhesion" to the disk se:rface (u* 

m 

~=o - -  (h* - -  z*) ~ I, 

(10) 

H ,~ n (P'r*) m/~ mt 
A = --~-Re / K* ; Bl = (--  1) l l! (m - -  l)! '~ ( ~ ~; t '/~ 

m + n - -  t R e  ~p*r~- / " 

For the velocity of the upper layer of the film Uo* at z* > Zo* 

* ~ T +~ n ' (11) 
~Zo = A Bz h* 1 ~o 

In special cases for appropriate to*, m, and n Eq. (10) transforms to the expressions obtained in ~4-9] for 
Newtonian, power-law, and viscoplastic liquids. 

To find the axial velocity component we make use of the continuity equation, writing the same for z* _< z o in 
the form 

~*( 1 dp* &z* a * )  
w'*=--f f  "~* dt* @ ~ + - ~  dz*. (12) 

For z > z o , dividing the integration region into the two intervals [0, Zo* ] and [z o , z*] we obtain 

4 
w , = _ _ ! .  ( 1 do* . &z* u*) 

,' p* dr* -]- ~r* -J- --~ -- dz* -- 

z* 

d t ' 4 - '  ~ @ r* ) 
z 0 

(13) 

After integration we find 

w*=-A~{B~( 'ah*f,-S~r, + f ~ ) l - h ,  (14) 

where for z* < Zo* 

f~ ~ e l  z*h *~ + ~ ( ( h - -  z*)~+ I _ h,~+~) ; 

(15) 

06) 
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f o r  z* * > z 0 

f3 = -~1 6z( ~1 ot*O9* + U* .............. 0r*09* ) dz*; 07)  

{I : ~*z*h *~-I + }'~ - -  h*~; 

I ' ] 
- -  gz~X ~ (z* - -  z*); 

1 ~o 

=" , . I } + .( ; 
z 0 

m 9 m 1 8p":' 1 OK* 
g ~ = - -  "~ + p* K* 5 - ~ g . ;  tz r* tz Or* Or* ,'~ 

( is)  

(~9) 

(20) 

1 0v* I O v * _ _ _ ~ .  

r,~ Or* O* Or* r* ' 

1 
n Re p'r* 

(21) 

(22) 

In many technological processes, in particular, in deposition of polymer coatings on a rotating stbstrate, 
calculation of the film thickness is important. 

The axial component of the displacement rate of the film profile boundary can be represented in the :'orm 

Oh* 8h* (23) 
9"  (h*) - + ug Or* br* 

With consideration of  Eq. (14) we obtain 

Oh':Ot, -- A Z~o= Bt t{F1 ~..,.Oh* + F,zl, -- F3, (24) 

where F 1 = fle [ , ,  = h* + h*" --A~; F~ = f2t ] , ,  = h*; Fs = f z l , *  = h*, fa s f2 ~ and fa being defined by Eqs. (18), (19), (20) 
respectively. 

The compositions used for formation of polymer coatings contain organic solvents, which evaporate intensely 
when deposited. Therefore in determining the ratio of the current polymer coating thickness to the axial velocity 
component, caused by flow of the composite, it is necessary to add a component related to evaporation of the solvents: 

a'ev = --//~)s- (25) 

The density of the diffusion flux j depends on the medium flow regime above the surface of the coating being 
formed. 

At values of the number Re e = wr2/v < 104 flow over the disk by the medium is laminar in character [13, 14] and 
the density of the diffusion flux is equal to [14] 

=-: Oo62Dcov_U~ze, l /2prj /3 (26) 

In the turbulent regime (Re e > 104) the density of the diffusion flux can be estimated with the expression [14] 

] ~ 10_Zc0-0.2wo. 8 rO.6Pr-d3/4 . (27) 

For gases and vapors v ~ D [15, 16]. Consequently, in Eqs. (26) and (27) we can take Pr a ~ I. As is evideat from 
these expressions, for laminar flow of the medium above the coating being formed j is independent of  radius. For the 
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turbulent regime, with increase in radial coordinate the intensity of  evaporation increases and the film surface ceases 
to be equiaccessible in a diffusion sense. 

In deposition of polymer coatings the diffusion flux density affects the solvent concentration, for  determination 
of  which we use the equation 

(28) 
d (h'*eO) = %w* -t'- w ~ 

dr* ev 

The first term on the right side of  Eq. (28) reflects the decrease in quantity of  solvent related to flow of  the 
composition, while the second is the result of diffusion into the surrounding medium. 

From Eq. (28) we obtain 
. (29) 

~-) , e v ~ t *  

~p = % + (1 - -  %) h* 

we find 

Considering that 

o* = ps ~ + p~/(1 --,~), 
(30) 

oo* Oq~ ......... (31) 
Or* --Ao* Or* ' 

dr* Or" 2 '  (32) 
* r 

where Ap* = p, --Pn �9 
Using Eq. (29) to determine ~a, we obtain 

O~ [ t* 
Or* = ( 1 - - % )  h* 

Ow*v w*vt*  8 h * i .  (33) 

Or* h *'~ Or*-- 'J '  

ev Wevzt* Oh* ~ (34) aq~ = ( 1 - - % ) [  ~* 
Or* [ h* h* ' or* j " 

The rheological properties of  polymer compositions depend on the concentration of  solvents they con tain and 
their solvent capabilities [17, 18]. The form of  these dependences can be found experimentally [19]. 

Having specified the initial condition 

h* (r*, O) = hg (r*), (35) 

to determine the current  film thickness along the disk radius we obtain a Cauchy problem for  an equation in first order 
partial derivatives (24), which can be solved numerically by the finite difference method. 

Thus, the relationships obtained above permit calculation of the basic hydrodynamic characteristics of  liquid film 
flow over the surface of  a rotating disk for a wide class of  media, the rheological behavior of  which is described by 
Shul'man's model. Possible mass-exchange phenomena and change in rheological properties and density of  the medium 
have been considered. 

The results of  the study can be used to construct mathematical models of  various technological processes and for 
determination of  optimal construction elements and operating regimes for centrifugal apparatus under concrete 
technological conditions. 

NOTATION 

r, shear stress; r o, limiting shear stress; K, medium consistency parameter; m, n, exponents; z* -- z/H, r" = r /R,  
dimensionless coordinates along z- and r-axes respectively; r = r/07w), dimensionless shear stress; r/, characteristic 
viscosity; w, angular velocity of  disk rotation; Re = PwRH/t], Reynolds number; H -10  -3 (m), characteristic film 
thickness; R ~ 10 -1 (m), characteristic radius; p* = p/P, P is the dimensionless and characteristic density of  the medium; 
w* = H /R  w/wR; u* = u/(wR), dimensionless velocities in axial and radial directions; u, radial velocity component; w, 
axial velocity component; r o = ro/(r]w), Hmiting dimensionless shear stress; h* --- h /H,  dimensionless film thickness; t 

tTZ r/g 

tw, dimensionless time; K* K/(~-ho ~-~ = = ) , dimensionless consistency coefficient; wev, axial velocity component 
related to evaporation; j, diffusion flux density; Ps, solvent density; D, diffusion coefficient; c o, saturated vapor 
concentration at surface of  liquid film and temperature of  surrounding medium; u, kinematic viscosity of taedium 
surrounding disk; Pr d = v/D,  diffusion Prandtl number; ~, relative solvent concentration in polymer composition; ~o o, 
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relative solvent concentration at initial moment; Pn, density of nonvolatile portion of composition; w ev = J/(Ps~ 
dimensionless evaporation rate; h o, film thickness at initial moment. 
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